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AJAIITUBHAS OBJIAYHASA CUCTEMA AHAJIMTUKHA BE3OITACHOCTH
AJIA HPOMBIIVIEHHBIX SHEPTETUYECKUX CUCTEM: METO/
MHOTI'OKJIACCOBOU JETEKIIUA

3antep Mypojuk, acrupant, ba3oBas kadenpa «AHamUTHKa OOJBIIMX AaHHBIX M METOJbl BUICOAHAIM3a», Y PaJbCKUil
(enepaybHbI YHUBEPCHUTET

AHHOTANUA

Pocm yposus yughposuzayuu suepeemuueckux cucmem 8 NPOMbIUIEHHBIX KOMIAHUSX NPUGET K NOSAGIEHUIO HOBbIX YSI36UMOCTIEN 8
Kubepbezonacrhocmu, mpeoyouwux NPUMEHEHUsl CLOJMCHbIX cucmeM 0OHapysicenus. B dannoil pabome npednazaemcs adanmueHas
obnaunas cucmema Onsl KIACCUDUKaAyuy u OOHAPYICEHUs. PA3TUYHBIX COObIMULL 6 DHEPLeMUYECKOU Cucmeme, BKI0Uas
Kubepamaxu, npupooHble HEUCTIPAGHOCIU U WMammble pedicumbl pabomsl. Paspabomana cucmema MHO2OKIACCOBOU OemeKyuy
HA OCHOBe OAHHbIX C hazomempuyeckux usmepumenvivix ycmpoticme (PHY) u cucmemmvix dcypranog 0ist Kongueypayuu
IHEP2OCUCTEMbL C O8YMsL IUHUAMU U YembipbMsi pene. TIpednosicennas modens no3sonsem udeHmuduyuposams 37 paziuiHbix
cyeHapues, 8KIOYAS NPUPOOHbBLE COObLIMUS, KUOEpamaxi u HOpMAbHble pexcumvl, Onazooaps 128 npusnaxam, u3enieuéHHbIM U3
usmepenut PHY u srcypuanos cucmemul. Haw nooxoo oocmueaem ooweii mounocmu 97% 6 pacnosnasanuu pasiuyHbix coobimui
8 IHepeocUcmeMme, Npu IMOM HAUTyHUiUe Pe3VIbIMambl NOIYYeHbl NPU 8bIAGNIEHUL AMAK C 6HeOpeHuemM KOMaHo (8 cpeonem 98%
MOYHOCMU) U amax ¢ usmeneHuem Hacmpoex peine (95% mournocmu). Moodens npodemorncmpuposana yCmoudu8oCmy K pasiuiHbLMm
MECMONONOACEHUAM HEUCTPABHOCIEN U CYEHAPUAM AMAaK, NOKA3bI8As 8bICOKUE NOKA3AmMenu MOYHOCMU U NOJHOMbL 0ddice 8
CIOJHCHBIX MHO20PENCUHbIX AMAKAX. AHAIU3 3HAYUMOCTNU NPUSHAKOE NO3BOIUI 8bLOEUMb KII0Uesble UzMepeHUs 01 OOHAPYHCeHUs.
amax, 0CODEHHO MOOYNU (PA3068bIX HANPANCEHUN U Yelbl (a3 HanpsiceHus, 4mo cnocobcmeyem 6onee 3pghekmusHomy
Monumopuney bezonacrhocmu dHepeemuyeckux cucmem. Obnaunas peanuzayus odecneyusaem odpadbomxy oannvix PUY 6
pedicumMe peanbHO20 BPEMEHU U ONEPAMUBHOE GbISGIEHIE AMAK, MO 0eaen CUCIeMY RPULOOHOU OIS RPOMbIUIEHHO20 BHEOPEHUSL.
Mooenv noxaszvieaem 100% mounocms 8 pacno3HABAHUU WIMAMHBIX PENCUMOSB U BbICOKYIO MOYHOCHb NpU OOHAPYICEHUU
HEUCHpagHOCMeEl 6 PA3IUYHbIX CeKYusix JuHull 2aekmponepedayu. Ilonyuennvie pesyivmamsl NOOMEEPHCOAIom, 4mo
NPeONONCEeHHbINl NOOX00 CNOCOOEH HEMKO pasiuyamv NPUpOOHble HEUCHPABHOCMU U 3I0OHAMEPEHHble aMAKu U MOdcem
UCNONIL308AMBCSL 8 KAUeCmEe HAOENCHOU CUCTNEMbL MOHUMOPUH2A 6e30NACHOCIU NPOMBIULIEHHBIX IHEPLEMUYECKUX CUCTEM.

KIIFOYEBBIE CJIOBA: ku0ep0e30macHOCTh SHEPTETHUSCKUX CHCTEM, 00JIadHbIe BBIYHCIICHUS, OOHApYKEeHHE KHOepaTax,
MalIMHHOe O00y4yeHue, (a3oMEeTpUUECKHE W3MEPUTEIbHBIE YCTPOICTBA, IPOMBIIUICHHBIE CHUCTEMBI YIPaBICHUS,
MHOTOKJIacCOBasl KJIacCH(UKaNWsi, MOHUTOPHHI B pEaJbHOM BpPEMEHH, IPOMBINIICHHbIE NPENNpPUATHS, aJalTHBHAS
aHaJIUTHKa 0E3011acHOCTH.

ADAPTIVE CLOUD-BASED SECURITY ANALYTICS FOR INDUSTRIAL
POWER SYSTEMS: A MULTI-CLASS DETECTION APPROACH

Zaiter Murooj, postgraduate, Dept. of Big Data Analytics and Video Analysis Methods, Ural Federal University

Abstract

The increasing digitalization of power systems in industrial companies has introduced new cybersecurity vulnerabilities that require
sophisticated detection systems. This work suggests a cloud-based adaptive system to classify and detect various power system
events, including cyber-attacks, natural faults, and normal operations. We design a multi-class detection system based on Phasor
Measurement Units (PMUs) data and the system logs on a two-line, four-relay power system configuration. The proposed model
can identify 37 different scenarios, including natural events, cyber-attacks, and normal operations, thanks to 128 features extracted
from PMU measurements and system logs. Our approach achieves 97% overall accuracy in distinguishing between various power
system events, with the best performance in identifying command injection attacks (with an average of 98% precision) and relay
setting change attacks (95% precision). The model is demonstrated to be robust for different fault locations and attack scenarios,
with high precision and recall rates even for complex multi-relay attacks. With feature importance analysis, we identify key
measurements for attack detection, particularly phase magnitude measurements and voltage phase angles, for more efficient
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monitoring of power system security. Cloud deployment facilitates real-time processing of PMU data and quick detection of attacks,
making it suitable for deployment at an industrial level. The model performs with 100% accuracy in identifying normal operations
and high accuracy in detecting faults in various sections of the transmission line. The results confirm that our approach can distinctly
classify natural faults and malicious attacks and can be used as a reliable security monitoring system for industrial power systems.

KEYWORDS: power system security, cloud computing, cyber-attack detection, machine learning, phasor measurement units,
industrial control systems, multi-class classification, real-time monitoring, industrial enterprises, adaptive security analytics.

1. Introduction

The rapid digital revolution of industrial power systems has offered unparalleled potential for
increased efficiency and control, but it has also introduced staggering cybersecurity challenges. [1][2]
Power systems, particularly those involving Intelligent Electronic Devices (IEDs) and Phasor
Measurement Units (PMUs), have been increasingly subject to sophisticated cyber-attacks. Power
systems form the critical infrastructure in industrial processes, where even an interruption can lead to
significant economic losses and risks to safety. [3]

There is always a need for conventional security measures, but they are often insufficient to detect
and categorize the range of possible threats to modern power systems.

Recent attacks have demonstrated that attackers can control power system components in a
manner that is difficult to distinguish from normal faults or normal operations. [4] This is particularly
evident in distance protection schemes in systems, where attackers can exploit the absence of internal
verification to trigger a false breaker operation. The complexity of such attacks and the need for rapid
detection make it necessary to develop advanced, smart security solutions that can leverage the scale and
processing power of cloud computing.[5]

This work proposes a cloud computing adaptive framework for power system security against
these challenges through a multi-class detection approach. Our suggested method processes data from
four PMUs measuring a two-line power system structure, processing 128 distinct features to identify and
classify 37 different scenarios, including natural events, cyber-attacks, and nominal behavior. Cloud
deployment of the framework enables it to process real-time handling of large amounts of PMU data
while providing the ability to adapt to emerging threat patterns.

2. Related Work

Nafiseh Soveizi and Fatih Turkmen [6] examine security and privacy concerns in scientific and
business procedures in cloud environments, and they conclude that there are research gaps. Based on
their examination, most security methods consider the modelling and execution phases and fail to address

the monitoring and adaptation phases properly. This neglect provides sufficient loopholes in detecting,
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preventing, and responding to security violations in cloud-based procedures. Their study demands more
integrated security approaches to enhance cloud workflow robustness.

Neeraj Kumar Pandey and Krishna Kumar [7] talk about the use of the Cloud of Things (CoT) in
industrial automation, particularly in the wake of the increased demand for contactless processing during
the COVID-19 pandemic. CoT merges cloud computing and IoT to ensure efficient data storage,
analytics, security, and deployment for industrial applications. However, the rapid increase in remote
computing has also been accompanied by an increase in cyber attacks. This paper analyses the industrial
automation contributions of CoT, the security aspects in various platforms and the challenges faced by
Industrial IoT (IIoT) and AloT in ensuring safe and sustainable industrial processes.

Sururah A. Bello and Lukumon O. Oyedele [8] write about the adoption of cloud computing in
the construction industry and specifically how it serves as an enabler for emerging technologies like
Building Information Modeling (BIM), IoT, VR, AR, and big data analytics. Its adoption curve is still
steep in an industry that stands to benefit from operational efficiency improvements. By a rigorous review
of 92 peer-reviewed papers (2009-2019), the paper analyzes the prevailing use, prospects, and constraints
to embedding cloud computing within construction. The paper also looks at what these constraints can
be overcome through, enabling the industry to digitize and adapt more extensively.

3. Proposed Methodology

The proposed methodology combines the analysis of PMU data with cloud-based machine
learning to detect and classify power system events. The system addresses data from four IEDs
monitoring a two-line power system and examines 128 features in order to describe 37 different
scenarios. Our approach has three main components: data preprocessing, feature extraction, and a multi-
class detection model. The system uses cloud computing for real-time computation and learns adaptively

from novel patterns and hence is applicable for industrial power system security problems.
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The data is made up of four Phasor Measurement Units (PMUs) measuring a two-line power

system and associated intelligent electronic devices (IEDs) [9; 10].
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Fig 1. Attack/Fault Location Distribution

There are 128 features per sample: 116 PMU measurements (29 measurements per PMU), and 12

additional features from control panel logs, relay logs, and Snort alerts. [11][12]

Table 1. Power System Monitoring Features

Component Description Count
Phase voltage angles and magnitudes (A-C) 72
PMU Measurements | Current phase angles and magnitudes (A-C) 24
Sequence components (voltage and current) 20
System Parameters Frequency and frequency delta measurements 8
Impedance measurements and status flags 12
System Logs Control panel, relay, and Snort logs 12
Total Features Sum of all measured and logged features 128

The data set consists of 37 distinct scenarios that are grouped into three major classes: natural

events [13][14] (8 scenarios including line faults and maintenance), cyber-attacks (28 scenarios including

data injection, remote tripping, and relay setting changes), and normal operation.
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Fig 2. Feature Composition

Natural phenomena encompass faults at various points (10-90%) in transmission lines L1 and L2,
while attack scenarios encompass sophisticated phenomena such as fault replay attacks, command
injection into single and multiple relays, and disabling attacks to relays. [15][16] The data was recorded
at fixed time intervals during the operation of the power system, providing a complete picture of normal
as well as abnormal system behavior.

In order to leverage the temporal nature of the data, the proposed security analytics framework
utilizes an advanced deep learning model based on Long Short-Term Memory (LSTM) networks. You
are a sentence-paragraph machine. The architecture of the LSTM cell consists of specialized gates
(input, forget, and output gates), which help regulate the flow of information.

The input layer takes 128 sequences of features, with a sequence length of 10 time steps. The time
steps are small enough to capture the temporal sequential training data but also small enough to compute
since differentiating the process through to full length is cumbersome. Through this sequence-based
approach, slight deviations in the operation of the power system that may characterize an attack or fault
condition can be auspiciously spotted by the model. The dropout rate of 0.2 is introduced between the

LSTM layers to avoid overfitting and to enhance generalization ability.
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Fig. 3. LSTM-Based Power System Security Classification Model Architecture

The output of the last LSTM layer goes to a dense neural network composed of two layers: The
first is dense with 128 input dimensions and 64 output dimensions and performed on ReLU, and it goes
to a dropout layer (0.2) for regularization. The last dense layer connects with 37 output nodes related to
each classification scenario and applies softmax activation to calculate the probability distributions for
all possible events. This multi-class approach allows for the concurrent separation of natural faults, types
of cyber attacks and normal operation.

The training used Adam optimizer with a learning rate of 0.001 and CrossEntropyLoss as the
objective function. The model can train for 50 epochs, with a batch size of 32, and usually converges by
epoch 20. Using backpropagation, the algorithm reads one sample batch after the other and updates the
weights. During inference, real-time PMU data streams are processed through the same preprocessing
pipeline (feature normalization using RobustScaler followed by sequence formation) as during training
before being classified by the trained model. Due to its cloud-based deployment, it can handle mass PMU
stream processing and can also update the parameters of the model in real time when new types of attacks
are observed.

The proposed model uses a top-down approach that first separates normal and natural events
from an attack scenario and further identifies the attack scenario in the respective top level. This method
allows for more sophisticated and refined detection methods while minimizing the false positives that

hinder numerous current binary classification systems in power system security.
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4. Results and Discussions

This section presents the performance analysis of our cloud-based adaptive system for power
system security. The model achieved 97% overall accuracy in classifying 37 different scenarios,
exhibiting good detection capacity in natural events, cyber-attacks, and normal operation. We evaluate
the performance of the model in precision and recall for every scenario type, examine the most effective
features to identify attacks, and experiment with the effectiveness of the framework in distinguishing
natural faults from attacks. The findings show the model's high capability in identifying complex attack
patterns with high accuracy during normal operation. Through a sophisticated temporal pattern
recognition process, the model extracts the unique scenarios that arose from the 128 features. A unique
signature appears in various feature dimensions when a command injection attack is introduced to relay
R1. During a normal operation, it has stable phase angle measurements (R1-PA1 = 70.3°), steady state
current measurements (R1-PM4 = 605.9), normalized impedance values (R1-PA = 6.39) and no logs in
the system (relayl log = 0, snort _logl = 0), which can be seen in the table below. These parameters
show unique anomalous behaviors during the attack: phase angles increase abnormally (R1-PA1 = 73.6°),
current measurements greatly increase (R1-PM4 = 783.2), impedance values decrease significantly (R1-
PA =4.12), and log records indicate activity (relayl log =1, snort logl = 1). Of importance, the other
relays (R2-R4) all lie within normal parameter bounds (phase angles range from 60.6°-70.4°, currents
604.4-612.7, impedances 6.11-6.34), creating a characteristic asymmetrical pattern around the system.
Performing best with sequences of 10 consecutive time steps, the LSTM network features temporal
consistency checks, which help it differentiate between natural faults that are largely symmetric across
the totality of relays and discrete, malicious attacks that induce localized faults in a specific relay. This
multi-dimensional, sequence-based approach enables the model to correctly classify the event as a
command injection attack with an accuracy of 98%, exemplifying how the intricate interconnections
between PMU measurements and system logs disclose the attack signatures that would be

indistinguishable in conventional rule-based detection techniques.
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The model showed good convergence behavior throughout the training session, with both the
training and validating metrics improving steadily between 50 epochs. The training accuracy accelerated

from 20% baseline to over 80% within the first 10 epochs before gradually improving to 97% by the 50th

epoch.
- Training Accuracy -o- Validation Accuracy
100
é; 754
o
=< 50
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Fig. 4. Training and Validation Accuracy
The type of learning curve shows good feature extraction and model optimization. The validation
accuracy was very close to the training accuracy, with a final difference of less than 2%, showing
excellent generalization without notable overfitting. The loss curves reflect a similar steep drop in the
first 10 epochs, leveling off at around 0.2 for training and validation loss. The stability in subsequent

epochs indicates the model hit a solid optimum state.

- Training Loss -o- Validation Loss
3.5
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0.94

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Epoch
Fig. 5. Training and Validation Loss
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Feature importance analysis revealed the most important measurements for attack detection in the
power grid. The four most important features were phase magnitude measurements (PMS5: 1) from all
four relays (R1-R4), i.e., current magnitude readings are important for attack detection. Voltage phase
angles (PA1-PA3: VH) from different relays were also highly important, particularly for command

injection attack detection.

M Feature Importance
R1-PM5:I
R2-PM5:I
R4-PA2:VH
R4-PA1:VH
R1-PA3:VH
R3-PA2:VH
R1-PA1:VH

R1-PA7Y:VH
T 1
0 0.0075 0.015 0.0225 0.03

Importance Score

Fig. 6. Feature Importance Analysis

The model showed variable detection quality in terms of the power system event type. The natural
events were detected with high accuracy, particularly for L1 faults (97-100% precision), while L2 fault
detection was less but still robust (83-97% precision). Under the attack detection class, the command
injection attacks were identified at high accuracy (97-100% precision), especially for multi-relay attacks.
Data injection attacks exhibited strong detection capabilities (86-100% accuracy), with minimal variation
of performance across fault locations. Relay setting change attacks showed uniformly high performance
(92-100% accuracy) across different fault ranges, and lower accuracy (80%) for early-range faults with

R1 disabled.

M Precision Bl Recall

Score

Fig. 7. Scenario-Specific Detection Performance

VceToilunBOe — WHHOBAIMOHHOE — pas3BHTHE:  NPOCKTHPOBAaHHME W ylpaBieHHe  [DJNeKTpoHHBIA  pecypc]  /
. pen. A.E. TTetpos. — Iy6na : 2008-2025. — ISSN 2075-1427. — Pesxxum moctyma: http://rypravienie.ru/



45

9ﬂ€Kmp0HHO€ HayiHoe uzoanue « Yemouiuugoe UHHOBAYUOHHOE pazeumue. npoekmuposaHue u ynpaesienue»
www.rypravlenie.ru ToM 21 Ne 1 (66), 2025, cT1. 3
The error analysis in depth reveals some trends in the model's misclassifications. Most
challenging were the differences between similar fault scenarios, particularly between L2 fault scenarios
(natural vs. attack-induced). For example, L2 faults within the 20-79% range had lower precision (0.83)

than other ranges, indicating some uncertainty with attack scenarios within similar locations.

Natural L1 - 1% 0% 2% 0% 0%
Natural L2 2% - 1% 4% 2% 0%
Command Inj. 0% 1% - 1% 0% 0%
Data Inj. 1% 3% 1% - 2% 0%
Relay Change 0% 2% 0% 2% - 0%
Normal Op. 0% 0% 0% 0% 3% -

Fig. 8. Error Analysis and Confusion Patterns

Early-range faults (10-19%) with relay disabling also exhibited relatively lower accuracy (0.80),
suggesting higher difficulty in distinguishing attack patterns under such situations. However, the model
exhibited high discrimination capability for command injection attacks and normal operation.

5. Conclusions

This project introduced a new paradigm for integrating cloud-based project management
technologies with industrial power system security and demonstrated the ability of adaptive cloud models
to revolutionize critical infrastructure protection. The innovation lies in our ability to integrate multiple
concepts of project management with real-time security monitoring, with accuracy rates of 97% in 37
different test scenarios, and the assurance of optimal use of resources within the cloud infrastructure.

Unlike traditional approaches that treat security and project management as separate disciplines,
our framework demonstrates how cloud technologies can develop to address industrial enterprise needs
by running security projects and conducting detection tasks simultaneously. The model's success in
addressing complex multi-class problems (37 classes) by far exceeds that of existing solutions that
typically handle 2-8 classes, and our deployment in the cloud enables scalable allocation of resources as

well as features of real-time monitoring essential for industrial project management.
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